تبلیغات

ابزار منو ثابت

بانک دانلود مقالات,پروژه,سرگرمی,علمی,فرهنگی - بهینه‌سازی و معرفی انواع مختلف روش‌های آن
بانک دانلود مقالات,پروژه,سرگرمی,علمی,فرهنگی
هدف ما سرگرمی شماست
صفحه نخست       پست الکترونیک          تماس با ما              ATOM            طراح قالب
پربازدیدترین مطالب

کد پربازدیدترین

درباره وبلاگ



مدیر وبلاگ : هیچکس هیچکس
نویسندگان
120x240
120x240

نظرسنجی
به نظر شما چه موضوعاتی بیشتر دراین وبلاگ قرار بدم







<
بهینه‌سازی یك فعالیت مهم و تعیین‌كننده در طراحی ساختاری است طراحان زمانی قادر خواهند بود طرح‌های بهتری تولید كنند كه بتوانند با روش‌های بهینه‌سازی در صرف زمان و هزینه طراحی صرفه‌جویی نمایند
دسته بندی مدیریت
فرمت فایل doc
حجم فایل 42 کیلو بایت
تعداد صفحات فایل 29
بهینه‌سازی و معرفی انواع مختلف روش‌های آن

فروشنده فایل

کد کاربری 1024

چكیده
بهینه‌سازی یك فعالیت مهم و تعیین‌كننده در طراحی ساختاری است. طراحان زمانی قادر خواهند بود طرح‌های بهتری تولید كنند كه بتوانند با روش‌های بهینه‌سازی در صرف زمان و هزینه طراحی صرفه‌جویی نمایند. بسیاری از مسائل بهینه‌سازی در مهندسی، طبیعتاً پیچیده‌تر و مشكل‌تر از آن هستند كه با روش‌های مرسوم بهینه‌سازی نظیر روش برنامه‌ریزی ریاضی و نظایر آن قابل حل باشند. بهینه‌سازی تركیبی (Combinational Optimization)، جستجو برای یافتن نقطه بهینه توابع با متغیرهای گسسته (Discrete Variables) می‌باشد. امروزه بسیاری از مسائل بهینه‌سازی تركیبی كه اغلب از جمله مسائل با درجه غیر چندجمله‌ای (NP-Hard) هستند، به صورت تقریبی با كامپیوترهای موجود قابل حل می‌باشند. از جمله راه‌حل‌های موجود در برخورد با این گونه مسائل، استفاده از الگوریتم‌های تقریبی یا ابتكاری است. این الگوریتم‌ها تضمینی نمی‌دهند كه جواب به دست آمده بهینه باشد و تنها با صرف زمان بسیار می‌توان جواب نسبتاً دقیقی به دست آورد و در حقیقت بسته به زمان صرف شده، دقت جواب تغییر می‌كند.
1- مقدمه
هدف از بهینه‌سازی یافتن بهترین جواب قابل قبول، با توجه به محدودیت‌ها و نیازهای مسأله است. برای یك مسأله، ممكن است جواب‌های مختلفی موجود باشد كه برای مقایسه آنها و انتخاب جواب بهینه، تابعی به نام تابع هدف تعریف می‌شود. انتخاب این تابع به طبیعت مسأله وابسته است. به عنوان مثال، زمان سفر یا هزینه از جمله اهداف رایج بهینه‌سازی شبكه‌های حمل و نقل می‌باشد. به هر حال، انتخاب تابع هدف مناسب یكی از مهمترین گام‌های بهینه‌سازی است. گاهی در بهینه‌سازی چند هدف به طور همزمان مد نظر قرار می‌گیرد؛ این گونه مسائل بهینه‌سازی را كه دربرگیرنده چند تابع هدف هستند، مسائل چند هدفی می‌نامند. ساده‌ترین راه در برخورد با این گونه مسائل، تشكیل یك تابع هدف جدید به صورت تركیب خطی توابع هدف اصلی است كه در این تركیب میزان اثرگذاری هر تابع با وزن اختصاص یافته به آن مشخص می‌شود. هر مسأله بهینه‌سازی دارای تعدادی متغیر مستقل است كه آنها را متغیرهای طراحی می‌نامند كه با بردار n بعدی x نشان داده می‌شوند.
هدف از بهینه‌سازی تعیین متغیرهای طراحی است، به گونه‌ای كه تابع هدف كمینه یا بیشینه شود.
مسائل مختلف بهینه‌سازی به دو دسته زیر تقسیم می‌شود:
الف) مسائل بهینه‌سازی بی‌محدودیت: در این مسائل هدف، بیشینه یا كمینه كردن تابع هدف بدون هر گونه محدودیتی بر روی متغیرهای طراحی می‌باشد.
ب) مسائل بهینه‌سازی با محدودیت: بهینه‌سازی در اغلب مسائل كاربردی، با توجه به محدودیت‌هایی صورت می‌گیرد؛ محدودیت‌هایی كه در زمینه رفتار و عملكرد یك سیستم می‌باشد و محدودیت‌های رفتاری و محدودیت‌هایی كه در فیزیك و هندسه مسأله وجود دارد، محدودیت‌های هندسی یا جانبی نامیده می‌شوند.
معادلات معرف محدودیت‌ها ممكن است به صورت مساوی یا نامساوی باشند كه در هر مورد، روش بهینه‌سازی متفاوت می‌باشد. به هر حال محدودیت‌ها، ناحیه قابل قبول در طراحی را معین می‌كنند.

چكیده
بهینه‌سازی یك فعالیت مهم و تعیین‌كننده در طراحی ساختاری است. طراحان زمانی قادر خواهند بود طرح‌های بهتری تولید كنند كه بتوانند با روش‌های بهینه‌سازی در صرف زمان و هزینه طراحی صرفه‌جویی نمایند. بسیاری از مسائل بهینه‌سازی در مهندسی، طبیعتاً پیچیده‌تر و مشكل‌تر از آن هستند كه با روش‌های مرسوم بهینه‌سازی نظیر روش برنامه‌ریزی ریاضی و نظایر آن قابل حل باشند. بهینه‌سازی تركیبی (Combinational Optimization)، جستجو برای یافتن نقطه بهینه توابع با متغیرهای گسسته (Discrete Variables) می‌باشد. امروزه بسیاری از مسائل بهینه‌سازی تركیبی كه اغلب از جمله مسائل با درجه غیر چندجمله‌ای (NP-Hard) هستند، به صورت تقریبی با كامپیوترهای موجود قابل حل می‌باشند. از جمله راه‌حل‌های موجود در برخورد با این گونه مسائل، استفاده از الگوریتم‌های تقریبی یا ابتكاری است. این الگوریتم‌ها تضمینی نمی‌دهند كه جواب به دست آمده بهینه باشد و تنها با صرف زمان بسیار می‌توان جواب نسبتاً دقیقی به دست آورد و در حقیقت بسته به زمان صرف شده، دقت جواب تغییر می‌كند.

1- مقدمه هدف از بهینه‌سازی یافتن بهترین جواب قابل قبول، با توجه به محدودیت‌ها و نیازهای مسأله است. برای یك مسأله، ممكن است جواب‌های مختلفی موجود باشد كه برای مقایسه آنها و انتخاب جواب بهینه، تابعی به نام تابع هدف تعریف می‌شود. انتخاب این تابع به طبیعت مسأله وابسته است. به عنوان مثال، زمان سفر یا هزینه از جمله اهداف رایج بهینه‌سازی شبكه‌های حمل و نقل می‌باشد. به هر حال، انتخاب تابع هدف مناسب یكی از مهمترین گام‌های بهینه‌سازی است. گاهی در بهینه‌سازی چند هدف به طور همزمان مد نظر قرار می‌گیرد؛ این گونه مسائل بهینه‌سازی را كه دربرگیرنده چند تابع هدف هستند، مسائل چند هدفی می‌نامند. ساده‌ترین راه در برخورد با این گونه مسائل، تشكیل یك تابع هدف جدید به صورت تركیب خطی توابع هدف اصلی است كه در این تركیب میزان اثرگذاری هر تابع با وزن اختصاص یافته به آن مشخص می‌شود. هر مسأله بهینه‌سازی دارای تعدادی متغیر مستقل است كه آنها را متغیرهای طراحی می‌نامند كه با بردار n بعدی x نشان داده می‌شوند. هدف از بهینه‌سازی تعیین متغیرهای طراحی است، به گونه‌ای كه تابع هدف كمینه یا بیشینه شود.
مسائل مختلف بهینه‌سازی به دو دسته زیر تقسیم می‌شود: الف) مسائل بهینه‌سازی بی‌محدودیت: در این مسائل هدف، بیشینه یا كمینه كردن تابع هدف بدون هر گونه محدودیتی بر روی متغیرهای طراحی می‌باشد. ب) مسائل بهینه‌سازی با محدودیت: بهینه‌سازی در اغلب مسائل كاربردی، با توجه به محدودیت‌هایی صورت می‌گیرد؛ محدودیت‌هایی كه در زمینه رفتار و عملكرد یك سیستم می‌باشد و محدودیت‌های رفتاری و محدودیت‌هایی كه در فیزیك و هندسه مسأله وجود دارد، محدودیت‌های هندسی یا جانبی نامیده می‌شوند. معادلات معرف محدودیت‌ها ممكن است به صورت مساوی یا نامساوی باشند كه در هر مورد، روش بهینه‌سازی متفاوت می‌باشد. به هر حال محدودیت‌ها، ناحیه قابل قبول در طراحی را معین می‌كنند.

چكیده بهینه‌سازی یك فعالیت مهم و تعیین‌كننده در طراحی ساختاری است. طراحان زمانی قادر خواهند بود طرح‌های بهتری تولید كنند كه بتوانند با روش‌های بهینه‌سازی در صرف زمان و هزینه طراحی صرفه‌جویی نمایند. بسیاری از مسائل بهینه‌سازی در مهندسی، طبیعتاً پیچیده‌تر و مشكل‌تر از آن هستند كه با روش‌های مرسوم بهینه‌سازی نظیر روش برنامه‌ریزی ریاضی و نظایر آن قابل حل باشند. بهینه‌سازی تركیبی (Combinational Optimization)، جستجو برای یافتن نقطه بهینه توابع با متغیرهای گسسته (Discrete Variables) می‌باشد. امروزه بسیاری از مسائل بهینه‌سازی تركیبی كه اغلب از جمله مسائل با درجه غیر چندجمله‌ای (NP-Hard) هستند، به صورت تقریبی با كامپیوترهای موجود قابل حل می‌باشند. از جمله راه‌حل‌های موجود در برخورد با این گونه مسائل، استفاده از الگوریتم‌های تقریبی یا ابتكاری است. این الگوریتم‌ها تضمینی نمی‌دهند كه جواب به دست آمده بهینه باشد و تنها با صرف زمان بسیار می‌توان جواب نسبتاً دقیقی به دست آورد و در حقیقت بسته به زمان صرف شده، دقت جواب تغییر می‌كند. 1- مقدمه هدف از بهینه‌سازی یافتن بهترین جواب قابل قبول، با توجه به محدودیت‌ها و نیازهای مسأله است. برای یك مسأله، ممكن است جواب‌های مختلفی موجود باشد كه برای مقایسه آنها و انتخاب جواب بهینه، تابعی به نام تابع هدف تعریف می‌شود. انتخاب این تابع به طبیعت مسأله وابسته است. به عنوان مثال، زمان سفر یا هزینه از جمله اهداف رایج بهینه‌سازی شبكه‌های حمل و نقل می‌باشد. به هر حال، انتخاب تابع هدف مناسب یكی از مهمترین گام‌های بهینه‌سازی است. گاهی در بهینه‌سازی چند هدف به طور همزمان مد نظر قرار می‌گیرد؛ این گونه مسائل بهینه‌سازی را كه دربرگیرنده چند تابع هدف هستند، مسائل چند هدفی می‌نامند. ساده‌ترین راه در برخورد با این گونه مسائل، تشكیل یك تابع هدف جدید به صورت تركیب خطی توابع هدف اصلی است كه در این تركیب میزان اثرگذاری هر تابع با وزن اختصاص یافته به آن مشخص می‌شود. هر مسأله بهینه‌سازی دارای تعدادی متغیر مستقل است كه آنها را متغیرهای طراحی می‌نامند كه با بردار n بعدی x نشان داده می‌شوند. هدف از بهینه‌سازی تعیین متغیرهای طراحی است، به گونه‌ای كه تابع هدف كمینه یا بیشینه شود. مسائل مختلف بهینه‌سازی به دو دسته زیر تقسیم می‌شود: الف) مسائل بهینه‌سازی بی‌محدودیت: در این مسائل هدف، بیشینه یا كمینه كردن تابع هدف بدون هر گونه محدودیتی بر روی متغیرهای طراحی می‌باشد. ب) مسائل بهینه‌سازی با محدودیت: بهینه‌سازی در اغلب مسائل كاربردی، با توجه به محدودیت‌هایی صورت می‌گیرد؛ محدودیت‌هایی كه در زمینه رفتار و عملكرد یك سیستم می‌باشد و محدودیت‌های رفتاری و محدودیت‌هایی كه در فیزیك و هندسه مسأله وجود دارد، محدودیت‌های هندسی یا جانبی نامیده می‌شوند. معادلات معرف محدودیت‌ها ممكن است به صورت مساوی یا نامساوی باشند كه در هر مورد، روش بهینه‌سازی متفاوت می‌باشد. به هر حال محدودیت‌ها، ناحیه قابل قبول در طراحی را معین می‌كنند.

چكیده بهینه‌سازی یك فعالیت مهم و تعیین‌كننده در طراحی ساختاری است. طراحان زمانی قادر خواهند بود طرح‌های بهتری تولید كنند كه بتوانند با روش‌های بهینه‌سازی در صرف زمان و هزینه طراحی صرفه‌جویی نمایند. بسیاری از مسائل بهینه‌سازی در مهندسی، طبیعتاً پیچیده‌تر و مشكل‌تر از آن هستند كه با روش‌های مرسوم بهینه‌سازی نظیر روش برنامه‌ریزی ریاضی و نظایر آن قابل حل باشند. بهینه‌سازی تركیبی (Combinational Optimization)، جستجو برای یافتن نقطه بهینه توابع با متغیرهای گسسته (Discrete Variables) می‌باشد. امروزه بسیاری از مسائل بهینه‌سازی تركیبی كه اغلب از جمله مسائل با درجه غیر چندجمله‌ای (NP-Hard) هستند، به صورت تقریبی با كامپیوترهای موجود قابل حل می‌باشند. از جمله راه‌حل‌های موجود در برخورد با این گونه مسائل، استفاده از الگوریتم‌های تقریبی یا ابتكاری است. این الگوریتم‌ها تضمینی نمی‌دهند كه جواب به دست آمده بهینه باشد و تنها با صرف زمان بسیار می‌توان جواب نسبتاً دقیقی به دست آورد و در حقیقت بسته به زمان صرف شده، دقت جواب تغییر می‌كند. 1- مقدمه هدف از بهینه‌سازی یافتن بهترین جواب قابل قبول، با توجه به محدودیت‌ها و نیازهای مسأله است. برای یك مسأله، ممكن است جواب‌های مختلفی موجود باشد كه برای مقایسه آنها و انتخاب جواب بهینه، تابعی به نام تابع هدف تعریف می‌شود. انتخاب این تابع به طبیعت مسأله وابسته است. به عنوان مثال، زمان سفر یا هزینه از جمله اهداف رایج بهینه‌سازی شبكه‌های حمل و نقل می‌باشد. به هر حال، انتخاب تابع هدف مناسب یكی از مهمترین گام‌های بهینه‌سازی است. گاهی در بهینه‌سازی چند هدف به طور همزمان مد نظر قرار می‌گیرد؛ این گونه مسائل بهینه‌سازی را كه دربرگیرنده چند تابع هدف هستند، مسائل چند هدفی می‌نامند. ساده‌ترین راه در برخورد با این گونه مسائل، تشكیل یك تابع هدف جدید به صورت تركیب خطی توابع هدف اصلی است كه در این تركیب میزان اثرگذاری هر تابع با وزن اختصاص یافته به آن مشخص می‌شود. هر مسأله بهینه‌سازی دارای تعدادی متغیر مستقل است كه آنها را متغیرهای طراحی می‌نامند كه با بردار n بعدی x نشان داده می‌شوند. هدف از بهینه‌سازی تعیین متغیرهای طراحی است، به گونه‌ای كه تابع هدف كمینه یا بیشینه شود. مسائل مختلف بهینه‌سازی به دو دسته زیر تقسیم می‌شود: الف) مسائل بهینه‌سازی بی‌محدودیت: در این مسائل هدف، بیشینه یا كمینه كردن تابع هدف بدون هر گونه محدودیتی بر روی متغیرهای طراحی می‌باشد. ب) مسائل بهینه‌سازی با محدودیت: بهینه‌سازی در اغلب مسائل كاربردی، با توجه به محدودیت‌هایی صورت می‌گیرد؛ محدودیت‌هایی كه در زمینه رفتار و عملكرد یك سیستم می‌باشد و محدودیت‌های رفتاری و محدودیت‌هایی كه در فیزیك و هندسه مسأله وجود دارد، محدودیت‌های هندسی یا جانبی نامیده می‌شوند. معادلات معرف محدودیت‌ها ممكن است به صورت مساوی یا نامساوی باشند كه در هر مورد، روش بهینه‌سازی متفاوت می‌باشد. به هر حال محدودیت‌ها، ناحیه قابل قبول در طراحی را معین می‌كنند.






نوع مطلب :
برچسب ها :
لینک های مرتبط :
          
چهارشنبه 13 دی 1396
 
لبخندناراحتچشمک
نیشخندبغلسوال
قلبخجالتزبان
ماچتعجبعصبانی
عینکشیطانگریه
خندهقهقههخداحافظ
سبزقهرهورا
دستگلتفکر





موضوعات
آمار وبلاگ
  • کل بازدید :
  • بازدید امروز :
  • بازدید دیروز :
  • بازدید این ماه :
  • بازدید ماه قبل :
  • تعداد نویسندگان :
  • تعداد کل پست ها :
  • آخرین بازدید :
  • آخرین بروز رسانی :
امکانات جانبی
داستان روزانه



در این وبلاگ
در كل اینترنت
تماس با ما

هدایت به بالای صفحه